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and Gulf of Mexico Pelagic Longline Fishermen

IVAR E. STRAND, JR.
University of Maryland

Abstract   This paper shows the effects of spatially aggregating data in an
analysis of fishing site choice among Atlantic and Gulf of Mexico longline fish-
ers. Parameter estimates of expected utility, measures of risk, and estimates of
welfare losses from area closures are presented. The estimated parameters and
the measures of risk aversion indicate some spatial variation. However, the wel-
fare measures from the area closure vary widely between a spatially aggregated
model and a disaggregated model. The reason appears to arise from the eco-
nomic behavior of fishers in New Jersey, where the expected utility model
performs poorly.
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Introduction

Fisheries economists may have ignored important differences in the behavior of
commercial fishermen. Given the greater emphasis being placed on understanding
and adjusting for the diversity in local fishing communities and in fishers, other so-
cial scientists spend great efforts to analyze the difference among spatially dispersed
communities and even fishermen. Sociologists point out differences including spa-
tial distributions in ethnicity, scale of operation, “corporate” structure, and other
potentially important individual characteristics of firms. For example, the Highly
Migratory Species Management Plan Chapter 9 (USDC 1999), contains an analysis
by sociologists that defined several distinct groups of “communities” that fish
highly migratory species with longlines. The implication of the analysis is that there
is importance in considering the spatially distinct groups differently, especially
when it comes to management.

The question remains as to whether the spatial heterogeneity in economic activ-
ity and behavior of individuals has any impact on traditional economic analysis
associated with management strategies. If spatial heterogeneity does exist and is ig-
nored, estimated regulatory impacts on the industry could be wildly inaccurate. An
obvious focus for analyzing spatial differences is in risk preferences of fishers. Each
time a captain puts to sea, a choice of where to fish is made and the choice may con-
vey information about the captain’s and/or owner’s preferences toward risk.
Economists are also recognizing the importance of spatial fishing decisions and the
random nature of production (e.g., Eales and Wilen 1986; Dupont 1993; Holland and
Sutinen 2000; Curtis and Hicks 2000). Mistiaen and Strand (2000), using a mixed or
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random parameter logit, showed a significant difference in the variance of expected
net revenue on site choice among longliners. However, they did not consider the
geographic distribution of behavior nor attempt to link the differences to character-
istics of fishers.

In this paper, spatially defined groups are used to determine differences in
fisher’s behavior toward economic risk. The paper is meant to be an exploratory ex-
amination of the spatial distribution of risk preferences and as such, uses a stylized
model of fishing behavior. A fundamental model of expected utility maximization is
used in a discrete choice framework, analyzing fishing activity for different spatially
located groups of fishermen. The paper is divided into seven sections, a description
of the fishery, the fundamentals of choice under uncertainty, the statistical methods
used to assess spatial risk preferences, the data construction, the empirical results of
applying the statistical methods, and the limitations and conclusions.

Descriptive Data

The pelagic longline fishery of the Atlantic and Gulf of Mexico has vessels operat-
ing out of ports distributed from Massachusetts to Texas.1 After discussion with the
Advisory Panels for Highly Migratory Species and for Billfish, sociologists chose
five communities to examine based, in part, on geographic spread. The communities
were (i) Gloucester and New Bedford, Massachusetts, (ii) Barnegat Light and Point
Pleasant, New Jersey, (iii) Hatteras and Wanchese, North Carolina, (iv) Islamorada
(in the Florida Keys), Pompano Beach (East Coast of Florida), Madeira Beach (West
Coast of Florida), Panama City (Florida Panhandle), Florida, and (v) Dulac and
Venice, Louisiana. The analysis suggested a great variety of activity and diversity in
the economic structure and importance of fishing to the local communities.

I follow their general approach, but extend the number of locations studied by
defining “homeport regions” based broadly on state boundaries. However, Florida is
segmented and New England states, as well as Virginia and Maryland, are com-
bined. A vessel and its annual activity were assigned to a “homeport region” based
on the reported homeport of the vessel owner in their application for a pelagic
longline permit.2 Table 1 shows the homeport regions and the average characteristics
of vessels reporting from a particular homeport.

An important implication of the homeport assignment is that a vessel need not
take the majority of its trips from that homeport region. For instance, less than one-
third of the longline trips taken by New England vessels departed from a homeport
in New England (table 1). Vessels in this region reported longlining in New England
in the summer and in the South Atlantic in the late fall. Thus, the definition predi-
cates risk preferences on the basis of the residency of the economic agent rather than
the geographic circumstances of the choice. Not all homeport regions have such a
large out-migration as New England. Vessels designated in Southeast Florida, the
Florida Panhandle, and Texas had nearly every trip departing from that homeport re-
gion.

A second feature of table 1 is the spatial variation in importance of pelagic
longlining operations by the vessels. At the extreme of the geographic range, the
vessels are generally less dependent on pelagic longlining. Vessels homeported in

1 These vessels also have been active in the Caribbean and as far south as Uruguay. I consider only those
with homeports on the East Coast or Gulf of Mexico.
2 A definition of homeport based a trip’s departing port rather than a vessel’s reported homeport was also
attempted. The results did not vary greatly.
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Louisiana/Texas and New England, for instance, take the fewest reported trips,
whereas vessels in southeast Florida take the greatest number of trips. Given that
tuna and swordfish annually migrate out of the Gulf of Mexico into the Atlantic and
back, one might expect this pattern.

When the average longlining trip is considered according to geographic location
of homeport, other interesting characteristics emerge. Table 2 shows that the average
miles of longline per set and the days at sea for trips from the extreme geographic
range are greater than for trips of vessels with homeports in the center of the geo-
graphic range. The vessel owners at the extremes of the range may want to produce
at the intensive margin because the season and activity is reduced by the migratory
nature of the stock. Another interesting feature of table 2 is the manner in which
tuna and swordfish revenues vary across homeport. There is a dramatic difference
between vessels with homeport in South Carolina, which capture primarily sword-
fish, and vessels in North Carolina, which capture primarily tuna. Tuna tends to be
the primary species north of North Carolina, whereas swordfish dominates from
South Carolina to the Keys. Oddly, the use of light sticks3 does not always imply
targeting of swordfish—South Carolina vessels use relatively few light sticks per
trip, yet have the greatest revenues per trip from swordfish. In the Gulf of Mexico,
tuna becomes the primary species. About 85% of the trips in the Gulf were taken to
the same area that was fished on the previous trip, and less than 3% of the trips re-
turned to a new port. Trips from vessels with homeports other than the Gulf returned
to the previous fishing site less than 60% of the time. Vessels home ported in the
Northeast are more active in changing ports and their fishing locations.

Table 1
Characteristics of Longline Vessels, by Region, 1996

Percentage Reported Minimum,
of Trips Longline Maximum, Vessel Cost per

Homeport Reporting Left from Trips per Median No. Length Mile at Sea
Region Vessels Region Year of Trips (feet) ($/mile)

New England 8 27.6 3.6 1,12,1 64.6 1.67
(ME to CT)
New York 15 49.5 7.2 1,20,6 55.7 1.30
New Jersey 21 68.7 5.5 1,14,4 61.1 1.40
Maryland/Virginia 6 65.5 9.1 2,19,8 59.7 1.30
North Carolina 13 82.7 10.2 3,25,10 51.9 1.02
South Carolina 5 98.9 17.4 7,29,17 57.7 1.34
Florida Northeast 9 69.9 8.1 2,14,6 46.5 0.92
Florida Southeast 27 95.6 16.7 1,49,15 46.1 0.87
Florida Keys 5 47.4 7.6 1,14,8 52.9 1.50
Florida Southwest 12 62.7 5.6 1,14,3 49.4 0.88
Florida Panhandle 13 98.7 6.8 1,17,7 55.0 1.10
Louisiana 32 74.2 5.3 1,14,7 70.4 1.67
Texas 7 100.0 5.6 1,9,2 68.0 1.55

Note: Region is defined on the basis of homeport. Florida areas are defined as Northeast (north of Fort
Pierce), Southeast (Fort Pierce to the Keys) the Keys, Southwest (north from the Keys to Tampa), and
the Panhandle (north from Tampa to Mississippi).

3 Light sticks are used on longlining vessels to attract fish to the bait. It is generally thought that the
technology works best with swordfish.
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Figure 1 also illustrates the geographic distribution of fishing activity in the At-
lantic and Gulf of Mexico during 1996 by showing the reported location of each set.
Of particular interest to the industry is the Atlantic Ocean’s Gulf Stream. Sets are
made along its western edge as the upwelling of nutrients at the edge attracts
smaller fish on which swordfish and tuna feed.

The Expected Utility Analysis in the Context of Fishing Choice

The captain (and/or owner) is assumed to make a spatial choice involving random
production each time they put to sea. A traditional way to analyze decision making
in the presence of uncertainty is the Von Neumann-Morgenstern expected utility
analysis (Von Neumann and Morganstern 1944). The agent is assumed to maximize
expected utility by choosing amongst alternative lotteries. In the fishery, the short-
run choice involves choosing an area to fish. The choice of an area is inherently the
choice of a lottery, and the set of areas is the choice set of lotteries.4 The basis for
the choice is the owner/captain’s expectation of utility associated with the returns in
each of the areas.

More formally, the agent is assumed to have a utility function, u(.), over the
sum of initial wealth (W) and a return (Z).5 The return in a given area is a random
variable with the density function F(Z). The Von Neumann-Morganstern expected

Figure 1.  Location of Sets and Area Designations, 1996

4 Bockstael and Opaluch (1983) first used this analysis in the context of an entire season’s choice of
which fishery to fish.
5 A far more complete discussion of expected utility analysis can be found in Mas-Colell, Whinston, and
Green (1995), which addresses issues such as the assumed properties of the expected utility function.
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utility function for a given area is then U(F) = Ú u(W + Z) dF. On each trip, the
captain’s choice of area will yield information on the parameters of the utility func-
tion and hence the preferences regarding risk. A trip to a given site is a choice
among lotteries, with a distribution of returns F(Zj ) associated with the jth area. If
the captain (and/or owner) maximizes expected utility, then the actual choices
among the sites can be used to estimate parameters of the utility function. The model
assumes that the choice of site depends on expected utility, the array of discrete al-
ternatives, the distribution of returns, and a specification for utility. The firm is
assumed to choose the one alternative with the highest expected utility. On a choice
occasion (in our case a trip, t), the captain is assumed to have a choice among J sites
and to solve the following conditional expected utility maximization problem:

V Max EU EUt
j J

t t Jt Jt
*

,...,
, ...,= + +{ }

=1
1 1e e , (1)

where the expression EU t1  is the deterministic portion of the expected utility func-
tion. An error term, ejt, is introduced because the researcher does not know all of the
information that the economic agent has and uses in their choice of a site. A second-
order approximation of the expected utility function for the jth site is:

EU W U W E Z
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j
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where s j jZ2 ( )  is the variance of net revenues at the jth site.
Several definitions of risk preference typically are used and will later be used to

characterize the risk preferences of fishers in a particular area. A risk-averse person
will have a concave utility function that implies they will not take an actuarially fair
gamble. The utility gained from winning a fair gamble is less than the utility lost
from losing it. The Arrow-Pratt measure of absolute risk aversion is:
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U W
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/

/
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,

where U(.) is the utility of wealth and the derivatives are taken at a specific level of
wealth. The absolute risk aversion value measures the curvature of the utility func-
tion and is invariant to scalar changes in the measurement of utility. An alternative,
the relative risk aversion measure, is given by:
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/

/
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.

It considers gains and losses as proportions to wealth. Finally, we can define the risk
premium as an amount of money that would make the decisionmaker indifferent be-
tween the risky alternative and its certainty equivalence. The risk premium is an
amount (M) that the individual would pay to assure receiving the risky alternative’s
expected value as opposed to taking the gamble. Pratt approximates this premium by:

M W Z
R W E Z
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˜ )

=
+[ ]s2

2
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.
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With estimated parameters of a utility function, the three different measures of risk
aversion can be computed.

With the parameters of the expected utility function, it is also possible to esti-
mate the losses associated with such a closure. Hanemann (1982) showed the
closed-form solutions of welfare change for the maximum expected utility functions
in several cases where the marginal utility of income was constant. However, the
closed-form solutions cannot be used in our case because the marginal utility of in-
come is presumed to change with wealth. However, one can determine an equivalent
variation by an iterative procedure that that equates expected utility before and after
the choice set is reduced:

EV EV V W E V W E EV

EV e e

a a

U W E

a A

U W E EV

a A

a a a a a a a a
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The equivalent variation is the willingness to pay to avoid the area closures. This wel-
fare measure is employed in other studies of fisheries closures (Curtis and Hicks 2000).

The Operational Model

With this theoretical framework, we can now explain the specifics of the process by
which the risk preferences of longliners can be. A quadratic utility function is used
and equation (2) becomes:

EU W W E z W E z zj j j j j( ) ( ) ( ) ( ) .= +[ ] + +[ ] +{ }a b s0 0
2

2 (3)

The expected return and its variance in this expression are based on previous infor-
mation from fleet operations. We chose not to include initial wealth for several
reasons:

1. Determining the initial wealth of agents is nearly impossible;
2. Introducing error into the highly correlated terms in the utility function creates

severe statistical problems;
3. Experiments (e.g., Kahnemann and Tversky 1984) indicate that choices in lot-

teries are independent of initial wealth.

The specification of the utility function used in the estimations is then:

EU W E z E z zj j j j j( ) ( ) ( ) ( ) .= [ ] + +[ ]a b s2 2 (4)

The expected utility needs only an expected return [E(Zj)] and a variance (s2)6 asso-
ciated with each area considered. With this specification, the choice of the kth site is
the solution to problem (1) if:

6 Higher moments of the distribution could be used, but are not in our analysis.
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a b s e a b s eE z E z z E z E z zkt kt k kt kt jt jt j jt jt( ) ( ) ( ) ( ) ( ) ( )[ ] + +[ ] + ≥ [ ] + +[ ] +2 2 2 2 (5)

" π =  on occasion   k j, j ,...,J tt1 .

These statements and the assumption that the error term has a type 1 extreme
value distribution lead to the probability statement:
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For each trip, we know which site was chosen and its probability of being chosen is
1. We let an index dk = 1. Those sites that are not chosen have a probability of 0 or
dk = 0. For the nth homeport area having Tn trips, the estimation is:
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This model is used to estimate the parameter, an and bn for each of the designated
homeport regions.

Later in the paper, the estimated losses associated with closure of an area are
explored. Using the estimates of the utility function ( ˆ ˆ)a b and  from applying equa-
tion (7), the estimated welfare loss on a trip associated with a change in the
opportunity set from Jt to Jt¢ is given by:
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where EV is the amount of money that will offset the loss in utility from a reduced
choice set. Although this measure may have a bias (McFadden 1995), the nature of
this problem reduces the likelihood of a large bias on the estimates.

Data Construction

The process of constructing data to make the fishing activity consistent with the
theoretical model is not trivial. The randomness is assumed to arise from the spatial
variation in stock. This variation is reflected in average catches per mile of mainline
during a set of longline.7 The operator was assumed to know how much line and

7 I will use the term set-mile to denote the number of sets times the miles of mainline on a particular
trip.
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how many sets would be made when they left port. The number would not vary
across sites. With these assumptions, the expected revenues and trip costs associated
with choosing a site can be constructed.

The mean and variance for revenue per set mile are constructed for each area
during each week of 1996 based on actual observations. Each reported set on a trip
in 1996 was considered (the location of the sets is shown in figure 1). The expected
value of revenue per set-mile and its variance was computed for the sum of trip har-
vests from tuna and swordfish for each of the 14 water areas (sites) shown in figure
1. These values are used to construct the expected net revenue, E(zkt ), and its vari-
ance, s2(zkt), for each of the tth trips at the kth fishing location/landing port for all
trips in the nth homeport region.8 The average harvest per set-mile was multiplied
by the set-miles on the actual trip to obtain the expected harvest per trip from fish-
ing at a given site. Prices were multiplied by harvest to obtain revenues. The
variance in revenues per set-mile was also expanded to the trip by multiplying the
square of set-miles by the variance of revenue per set-mile. The expected value and
variance of revenues were computed for each week of the year for each of the fish-
ing location/landing port combinations. For a given trip, the expectation and its
variance were computed based on the previous three weeks of fishing activity at a
given harvest area/landing port combination. The expectation and variance for a site
for an upcoming trip was computed as a weighted average of past three weeks’ ac-
tivity with higher weights given to the less distant past. The development of
expected net revenues required generating not only expected net revenues and vari-
ance of net revenues for a vessel’s actual site/port chosen, but also generating the
net revenues and variances for the site/port that could possibly be chosen.

It was also necessary to develop trip costs.9 In 1997, a plurality of boats used a
50% share system, meaning that 50% of the net revenues from a trip go to the owner
of boat (Porter et al. 2001).10 Based on that information, the expected net return to
the decisionmaker is given by E(Zjt) = 0.5 * [E(zjt) – Cjt]. The development of costs,
Cjt, is based on the assumption that the fishing behavior would be independent of the
area chosen. This means that the fishing activity (i.e., number of sets, bait and light
sticks used, and miles of mainline) do not vary across areas.

Travel expenses from a vessel’s homeport to each of the feasible alternative
fishing locations vary and were estimated in three stages, the estimation of: a
vessel’s fuel consumption per mile, a vessel’s cost per mile, and the distance trav-
eled from a homeport to each of the feasible site/port combinations. Fuel
consumption per mile was estimated consistent with Mistiaen and Strand (2000), ex-
cept that they misreported the relationship between fuel consumption and vessel
length. The correct relationship is:

Log(fuel/mile) = –1.57 + 0.033 *vessel length           Rbar2 = 0.61, Obs = 107
(–10.16) (13.09),

where the values in parentheses are t-values under the null hypothesis of no effect.
The cost per mile for each vessel was determined using fuel consumption per mile
multiplied by cost per gallon. The cost per gallon data were obtained from the eco-
nomic survey and were the averages for all reporting trips in a region.

The next step was to compute distances from each vessel’s initial homeport to

8 No consideration was given to potential correlation among trips for each captain/owner within a
homeport region. Instead, each trip of vessels designated in a homeport region was treated the same.
9 Trip costs represented approximately 80% of all annual costs of an average pelagic longline vessel in
1997 (Porter et al. 2001).
10 A plurality of boats also included all trip costs when determining net revenue.
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each alternative fishing ground/landing port. Centroids based on each vessel’s sets
were computed for each trip to obtain an “average” location fished for each of the
14 fishing locations (see figure 1). These centroids then were averaged across all
trips in a given fishing area to use as the point to which the vessels would travel.
Thus the “travel” distance for each vessel was from the actual homeport port to a
centroid of a fishing area and then to a landing port (whose location was based on
the average “location” of vessels landing in that area). Straight-line distances could
not always be used because vessels had to avoid going aground on land areas, such
as Florida. Thus, linear segments approximating travel routes were devised to avoid
the land areas.

Another component of trip costs is that associated with gear (primarily hooks),
bait, and light sticks. The gear and bait costs per trip from the survey (Porter et al.
2001) were regressed against the set-miles per trip with the following result:

Bait and gear cost per trip = 248 + 20 *set-miles        Rbar2 = 0.82, Obs = 85
(1.21) (20.03),

where the values in parentheses are t-values under the null hypothesis of no effect.
The number of light sticks on a given trip was computed from the actual light sticks
used per set on each 1996 trip multiplied by the average cost per light stick ($0.55/stick)
to yield the light stick costs per trip.

In keeping with the requirements of expected utility analysis, no trip with nega-
tive expected net revenues was used. Of the actual trips, this represented about 10%
of the trips. Of those trips, about two-thirds reported less than three sets, suggesting
an unusual circumstance, such as engine failure or bad weather.

Results

The Estimated Coefficients

Table 3 contains the estimates of a and b for each homeport region and for an ag-
gregate of all Atlantic Coast homeports. The equations were estimated on the basis
that both terms associated with b in equation (3) had the same effect. Estimated, but
not reported, were equations in which the coefficient on variance was not restricted
to be equal to the coefficient of the second term of equation (3).

The expected concavity (a > 0 and b < 0) was realized for all homeports except
for the trips taken from Louisiana and the Florida Panhandle. The statistical signifi-
cance of the coefficients varied substantially across the homeports, owing, in part, to
the relatively small sample sizes that emerged because of the geographic disaggre-
gation. The quadratic form expansion of the utility function creates substantial
correlation between the expected profit and the quadratic expression (simple corre-
lation coefficients ranged between 0.65 and 0.85). Because of this, states with larger
fleets generally produced more statistically significant coefficients. When the model
was estimated with three coefficients, one could reject that the two estimates were
different in all cases, although in several cases the coefficient on the variance term
was not significantly different from 0. Multicollinearity among regressors undoubt-
edly accounted for much of the large variation in the estimated coefficients.

It is worth speculating as to why the model performed so poorly for homeports
ranging from Tampa, Florida, through Louisiana. It is possible that groups of vessels
normally fish in certain areas and information is shared within the group but not
across groups. It could also be that a large percentage of vessels (68% in Southwest,
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Florida and 59% on the Panhandle of Florida) never change areas fished. Perhaps a
greater refinement in the definition of fishing area would improve the results. Nev-
ertheless, there does appear a consistency across homeport regions with respect to
concavity and, hence, risk aversion.

For a comparison with a model in which no spatial consideration was given, the
final row of table 3 has the estimates for a sample pooled over all areas except
homeports from the Florida Keys through Texas. The aggregate estimates imply con-
cavity and risk aversion and generally show less responsiveness to expected
revenues and variance than do the estimates from samples of individual areas.

The Estimated Risk Measures

Table 4 contains estimates of several risk measures, each giving a slightly different
perspective of the risk preference in the regions shown in column 1. The Arrow-
Pratt relative risk-aversion measure shown in column 2 includes the estimated

Table 3
Estimated Random Utility Parameters

Estimated Coefficients (t-ratio)

Homeport Net Revenue Quadratic Term Pseudo r-squared
Region ($10–3) (10–6) (Choices, Trips)

New England 0.402 –0.018 0.30
(1.84) (–1.63) (228, 27)

New York 0.324 –0.023 0.35
(3.14) (–3.27) (795, 106)

New Jersey 0.037 –0.00081 0.27
(0.10) (–0.30) (918, 110)

Maryland/Virginia 0.233 –0.00420 0.34
(1.94) (–1.24) (393, 53)

North Carolina 0.328 –0.00291 0.39
(4.18) (–2.23) (744, 105)

South Carolina 0.181 –0.0108 0.17
(1.54) (–1.55) (599, 76)

Florida Northeast 0.220 –0.0080 0.28
(1.72) (–1.49) (603, 70)

Florida Southeast 0.257 –0.0171 0.35
(7.21) (–5.5076) (2,849, 389)

Florida Keys 1.22 –0.0432 0.44
(2.50) (–1.69) (189, 32)

Florida Southwest 0.0176 –0.00383 0.26
(0.16) (–0.94) (538, 60)

Florida Panhandle –0.178 –0.0018 0.29
(–2.04) (–0.82) (624, 73)

Louisiana 0.019 0.0019 0.29
(0.73) (0.99) (1,654, 205)

Texas 0.214 –0.0083 0.29
(1.73) (–1.71) (218, 26)

ALL ATLANTIC HOMEPORTS 0.071 –0.0013 0.33
(excludes Florida Keys) (2.94) (–2.28) (7,129; 936)
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parameters of the utility function along with the expected net return of the trip (re-
member, wealth is assumed to be 0). Fishermen from New York, principally Long
Island, have the greatest average relative aversion to risk, whereas fishers in the
Florida Keys are estimated to have the lowest. This measure, by itself, provides
much information about risk preferences, but other measures may be more reflective
of the preference with respect to the circumstances faced.

In column 3, the median11 value of the risk premium per trip is shown for the
alternative chosen on a given choice occasion. This measure contains both the rela-
tive Arrow-Pratt measure and the variance of the selected alternative. It represents a
willingness to pay to insure against the randomness of the expected value per trip. It
is an ex post measure in this case under the assumption that we know the parameters
of the utility function with certainty and that we know which choice was made. The
median over the choices made from vessels at a given homeport area vary, from a
low of about $30 per trip in North Carolina and the Florida Keys to a high of over
$500 in the Texas region. The premium is a function of variance in net revenues that
is rather high in Texas, averaging over three times the variance in North Carolina.

The difference in variance is, in part, related to the type of trip that is taken in
the different regions. The trips in each region vary in length and expenses incurred.
To make the risk premium more comparable, each trip’s estimated risk premium is
divided by the sets made during the trip and by trip expenses. The median for each
region is presented in columns 4 and 5. When considered on a per-set basis, the dif-
ferences among areas are reduced considerably, with 9 of the 12 regions having a

Table 4
Measures of Risk Preference, by Homeport Region, 1996

Median Median Risk Median Risk Median Risk
Arrow-Pratt Premium Premium Premium as a

Homeport Relative Risk per Trip per Set Percentage of
Region Aversion ($/trip) ($/set) Trip Costs

New England 0.18 142 33 5.6%
(ME to CT)
New York 0.71 377 72 11.0%
New Jersey 0.18 269 29 5.0%
Maryland/Virginia 0.07 79 13 2.6%
North Carolina 0.03 30 8 1.3%
South Carolina 0.28 219 44 8.1%
Florida Northeast 0.14 139 27 5.1%
Florida Southeast 0.13 66 27 4.9%
Florida Keys 0.06 31 14 2.1%
Florida Southwest 0.21 140 68 8.1%
Florida Panhandle NA NA NA NA
Louisiana NA NA NA NA
Texas 0.35 531 74 10.5%
ALL ATLANTIC HOMEPORTS
(excludes Florida Keys) 0.07 55 11 2.1%

Notes: Estimates based on coefficients for expected net revenue and variance of choices that were the
selected choice on the previous trip.

11 The median is used instead of the mean because it has a smaller variance. In some cases, extreme out-
liers skew the estimated distributions considerably.
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value less than $50/set. Texas still has the largest value, resulting primarily from the
large variances associated with the sites that were chosen.

To show the risk premium in comparison to explicit costs of the trip, each trip’s
risk premium was divided by the estimated cost of the trip. The median risk pre-
mium was no more than 11% of trip costs in any region. The lowest percentages
were found in North Carolina, Maryland/Virginia, and the Florida Keys, where the
risk imposed was less than 3% of the trip costs. The largest percentage occurred
near the extremes of the geographic range, in Texas and New York. Because of the
species’ migratory nature, these areas will likely face the greatest variance when the
species move in and out of the areas. Operators in these areas were also estimated as
having relatively high aversion to risk. The combination of these two factors con-
tributed to the relatively high “inconvenience” of risk.

Finally, the last row shows our measures based on the pooled sample. Because
of the estimates of utility function parameters, the relative risk aversion measure
was small, especially in comparison with the entire sample. The low risk aversion
estimate carried throughout the other measures, indicating a small risk premium per
set at sea ($8/set) and a small inconvenience factor (2% of trip costs).

Estimated Losses Associated with Area Closures

One of the advantages of the expected utility analysis is that utility-based welfare
measures from policy changes are possible. For example, the National Marine Fish-
eries Service (NMFS) will sometimes consider closing areas to reduce the pressure
on swordfish or tuna stocks. To examine the effect of disaggregating into homeport
regions, the welfare associated with closing area 2 (figure 1) was examined using
both the estimated parameters associated with the homeport and the parameters as-
sociated with the aggregate model. The results are shown in table 5.

Generally, the median welfare loss per trip is much larger with the aggregate
model than with the homeport model. The average loss per trip for the homeport

Table 5
Welfare Measures of Closing Area 2 (figure 1) during 1996, by Region

Regional Homeport Model Aggregate Model

Percentage Percentage
Median Loss of Median Loss of

Welfare Loss Expected Welfare Expected
Homeport per Trip Profit at Site Loss per Profit at Site
Region ($) Selected Trip ($) Selected

New England 500 33% 2,150 107%
(ME to CT)
New York 200 5% 1,900 44%
New Jersey 4525 71% 2,375 48%
Maryland/Virginia 600 21% 2,400 77%
North Carolina 400 9% 2,300 50%
South Carolina 575 12% 1,350 32%
Florida Northeast 175 7% 675 13%
Florida Southeast 0 0% 0 0%
Aggregate Annual Loss
All Atlantic Homeports $724,500 $1,439,200
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model was about one-fifth of the value of the aggregated model. The one exception
is New Jersey, which estimated an especially large loss of $4,525/trip with the dis-
aggregate model, whereas the aggregate model generated a more reasonable
expected loss of $2,375.

The exception helps the results. Essentially, the expected utility model did not
explain the site choice for the New Jersey trips nearly as well as it did for the other
states. Not only did it not explain the choices well, the coefficients associated with
the utility function were an order of magnitude smaller than the estimates for other
homeport regions on the East Coast. The large error associated with New Jersey was
introduced into the estimated parameters of the aggregate model and had the effect
of reducing the parameter estimates (i.e., the responsiveness to expected profit and
its variance). Because the vessels were not estimated to respond greatly within the
aggregate model, the estimated welfare lost from closing an area was relatively
larger. The vessel owners were considered more reluctant to move within the aggre-
gate model and an area closure will lead to a larger disutility and estimated costs.

Limitations

As with any empirical work, the results must be considered within the situational
context, restricting the bold claims that could be made about their generality. The
most fundamental part of the analysis, the expected utility framework, must cer-
tainly be scrutinized for its relevance to decision making in fisheries. For example,
the Allais paradox indicates an inconsistency between expected utility-maximizing
behavior and commonly observed choices of individuals. Eggert and Martinsson
(2002) also have raised a number of potential problems of the expected utility ap-
proach within fisheries, the most germane being the relatively small gamble (in
terms of lifetime income) that a captain or owner makes regarding the spatial loca-
tion of a trip. In cases of repeated small gambles, the rational approach reduces to
maximizing expected profits (Arrow 1971; Rabin 2000). Eggert and Martinsson
(2002) suggest that models of loss aversion and narrow bracketing may be superior
to the expected utility analysis when considering small gambles.

While these comments do apply, the stakes on a typical longline trip are not that
small, and the model employed is more of a “narrow bracketing” version of ex-
pected utility analysis. In 1997, for example, the average net operating return per
trip in the pelagic longline fishery was about $3,400 (Porter et al. 2001). If the crew
payments are also included (assuming that the crew are involved in the decision pro-
cess), then the average return rises to nearly $7,500 per trip. While these may be
relatively small compared with lifetime earnings, they are substantially larger than the
average commercial fishing trip. Moreover, the results did not use a wealth component
but instead used only the net returns associated with the gamble. In this way, I was as-
suming fishermen were narrow bracketing by using only one trip at a time (Eggert and
Martinsson 2002). This may be the manner in which fishermen make their spatial lo-
cation decisions. It is, however, not strictly the traditional expected utility analysis
that considered the choice within the context of a lifetime stream of income.

Another issue that deserves attention is site definition. By and large, NMFS des-
ignations for ocean sites were used. These are likely too large if narrow specificity
of fishing location is desired. I made no effort to reduce the site size, with the ex-
ception of doubling to four the number of sites in the Gulf of Mexico.

I also tried to simplify the definition of fishing groups, relying on homeports as de-
fined mostly by state borders. Clearly there are other non-homogeneous characteristics
of the pelagic longline fleet. Vessel size, type/extent of vessel loan, and ethnicity of
owner/captain are among the characteristics that might influence risk preferences.
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Conclusions

Although this research was largely exploratory in nature, it does indicate that risk
preferences and the cost of risk vary spatially. The choice of fishery enhances the
likelihood of this finding, and it is wise not to generalize the finding across fisher-
ies. The pelagic longline fishery extends over a coastline of nearly 2,000 miles and
harvests species that annually migrate even further. Thus, there is a potential for
large spatial variation in the risk that fishers take. This is not true for an inland sea
fishery, like Chesapeake oysters. Because of the sedentary nature of some species
(small distances between harvesting areas and the constant “sampling” of the
stocks), the variation of harvest is quite small and constant. The “gamble” that oc-
curs in these fisheries is small, and economic literature suggests that maximizing
expected profit is the rational strategy. It is not likely that one could detect risk pref-
erences, much less spatial variation in them. Moreover, there may be a sample
selection problem, as the most risk averse fishers might choose to be oystermen.
There would be little variation in risk preference in such a sample.

The exercise revealed a number of difficulties with analyzing risk behavior. Ini-
tially, one must choose the nature of the decision. It could be the decision on entry
and exit, the location of the homeport, the type and amount of gear used, the loca-
tion of a trip, or the location of a set. I focused on the location of a trip, making that
choice conditional on a number of other choices. One must confront the problem of
estimating initial wealth. I chose to use “no wealth” as the initial position. This was
because the other alternatives of predicting wealth were worse, and there is some
reason to believe that myopic decisions are made. The decision regarding size of site
and the relevant choice set is inherent in all RUM models, but when the spatial area
is as immense as this one, it is particularly critical. One needs a sufficiently large
site size so that expected returns and variances can be calculated simply but not so
large that the sensitivity to the characteristics of a site is lost. The choice set also
should reflect realistic alternatives considered by the fisher. These researcher
choices make the results conditional. Hopefully, the results obtained in this paper re-
flect reasonable compromises.

Given those caveats, the consistent estimated concavity of the utility function
across space supports the notion that fishermen are risk averse, at least in the limited
(narrow bracketing) sense of the analysis. However, even within risk averse fishers,
there was spatial variation. Across all measures of risk aversion, the greatest oc-
curred at the ends of the geographic range of the fishery, whereas the smallest
occurred in the center of distinct areas, such as North Carolina, on the Atlantic, and
the Florida Keys. This may be a function of preferences of the fishers and the
choices available in different areas, but it could also arise from circumstances that
were not considered. Being at the geographic extreme may make fishers more de-
pendent on other fishery alternatives. If other fishing opportunities were included in
the choice set, the results might change.12

The consistency in the order of magnitude of the median risk premium per day
at sea lends support to the results of the analysis. While there was considerable
variation, a risk premium of less than $75 per set was found. This represented less
than 11% of the set costs to the boat. Although the fishers are, on average, risk
averse, the implicit costs of the risk to them were estimated to be within the costs
that they incur on a normal trip.

12 In the survey conducted by Porter et al. (2001), respondents in New York did not indicate other fish-
ing activities beside longlining, suggesting that exclusion of other fishing opportunities did not affect
the results.
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Finally, substantial differences were found when the entire sample was
pooled. In general, the pooled sample’s results indicated less sensitivity to the ex-
pected values and variance. This would suggest that the costs of policies, such as
area closures, are overestimated with a spatially aggregate model. Thus, there is a
danger of aggregation bias when not recognizing spatial heterogeneity in fisheries.
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